New year brings a new Yale Cancer Center director

Incoming leader plans to direct advances in research as well as clinical practice

Charles S. Fuchs, M.D., M.P.H., an internationally renowned expert in gastrointestinal cancers and cancer epidemiology, has been named director of Yale Cancer Center (YCC), one of just 47 National Cancer Institute-designated comprehensive cancer centers in the nation and the only one in Connecticut, and physician-in-chief of Smilow Cancer Hospital at Yale New Haven.

Known for his research that spans the prevention, biology, and treatment of gastrointestinal cancers, Fuchs has spearheaded clinical trials that have resulted in FDA approval of new drugs for patients. He established one of the first large-scale molecular epidemiology laboratories, characterizing an array of molecular events in thousands of tumors. This ongoing project, which has yielded valuable information about patients both before and after cancer diagnosis, led to the finding that healthy individuals who took aspirin had a significantly lower risk of developing colorectal cancer. It also led to the identification of a molecular tumor profile that is connected to better patient outcomes with aspirin use after diagnosis, uncovered energy balance pathways that contribute to the development and progression of cancer, and identified new potential targets for cancer therapy.

“Charlie’s scientific renown and contributions, which include discoveries about the underpinnings of cancer, insights into prevention, and developing new therapies, speak for themselves,” says Robert J. Alpern, M.D., dean and Ensign Professor of Medicine. “His considerable experience will be an asset to the cancer center as we build upon the solid foundation that already is in place.”

Fuchs received his medical degree from Harvard Medical School in 1986. He completed his medical residency at Brigham and Women’s Hospital, where he also served as chief medical resident, and completed his medical oncology fellowship at Dana-Farber Cancer Institute. In 1994, he received his M.P.H. from Harvard School of Public Health. He has been professor of medicine at Harvard Medical School and chief of the gastrointestinal oncology division and the Robert T. and Judith B. Hale Chair in Pancreatic Cancer at Yale.

In memoriam: Carolyn Walch Slayman, Ph.D.

Renowned geneticist and administrator was a pioneer among women in science

Carolyn Walch Slayman, Ph.D., deputy dean for academic and scientific affairs at the School of Medicine, Sterling Professor of Genetics, and professor of cellular and molecular physiology, died on December 27 at Yale New Haven Hospital. She was 79, and had been undergoing treatment for recurrent breast cancer.

Slayman was a faculty member and leader at the medical school for almost 50 years. While she was steadfastly humble about her accomplishments, her career was characterized by a series of firsts. She was the first woman to head a department at Yale School of Medicine when she was named chair of the Department of Human Genetics (now Genetics) in 1984. In 1995, she became the school’s first deputy dean for academic and scientific affairs, and the first woman to hold a deputy deanship.

“It is difficult to overstate Carolyn’s influence on the School of Medicine and the many individuals who have passed through our doors,” says Robert J. Alpern, M.D., dean and Ensign Professor of Medicine. “We depended on her judgment and wisdom to help guide every major decision.”

After graduating from Swarthmore College in 1958 with highest honors in biochemistry and chemistry, Slayman earned a Ph.D. in biochemical genetics under Nobel Laureate E.L. Tatum at Rockefeller University, where she was the only woman in her class. As a National Science Foundation Fellow, Slayman did postdoctoral work in membrane biochemistry at Cambridge University. Following a brief stint as assistant professor of biology at Western Reserve University (now Case Western Reserve), she joined Yale as assistant professor in the departments of microbiology and physiology in 1967. She helped to establish an adolescent health clinic that provided some of the earliest care to HIV-infected youth in New York City, noted Yale President Peter Salovey, Ph.D. ’86, and Dean and Ensign Professor of Medicine Robert J. Alpern, M.D., Ph.D., an expert on HIV/HPV science and cervical cancer prevention, has been named dean of the School of Public Health. Vermund comes to Yale in February after serving since 2009 on the faculty of Vanderbilt University School of Medicine, where he was professor of pediatrics, medicine, health policy, and obstetrics and gynecology; the Amos Christie Chair in Global Health; director of the university-wide Vanderbilt Institute for Global Health; and vice president for global health of the Vanderbilt University Medical Center.

“In the mid-1980s, Dr. Vermund helped establish an adolescent health clinic that provided some of the earliest care to HIV-infected youth in New York City,” noted Yale President Peter Salovey, Ph.D. ’86, and Dean and Ensign Professor of Medicine Robert J. Alpern, M.D., Ph.D., an expert on HIV/HPV science and cervical cancer prevention, has been named dean of the School of Public Health. Vermund comes to Yale in February after serving since 2009 on the faculty of Vanderbilt University School of Medicine, where he was professor of pediatrics, medicine, health policy, and obstetrics and gynecology; the Amos Christie Chair in Global Health; director of the university-wide Vanderbilt Institute for Global Health; and vice president for global health of the Vanderbilt University Medical Center.

In the mid-1980s, Dr. Vermund helped establish an adolescent health clinic that provided some of the earliest care to HIV-infected youth in New York City,” noted Yale President Peter Salovey, Ph.D. ’86, and Dean and Ensign Professor of Medicine Robert J. Alpern, M.D., Ph.D., an expert on HIV/HPV science and cervical cancer prevention, has been named dean of the School of Public Health. Vermund comes to Yale in February after serving since 2009 on the faculty of Vanderbilt University School of Medicine, where he was professor of pediatrics, medicine, health policy, and obstetrics and gynecology; the Amos Christie Chair in Global Health; director of the university-wide Vanderbilt Institute for Global Health; and vice president for global health of the Vanderbilt University Medical Center.

“In the mid-1980s, Dr. Vermund helped establish an adolescent health clinic that provided some of the earliest care to HIV-infected youth in New York City,” noted Yale President Peter Salovey, Ph.D. ’86, and Dean and Ensign Professor of Medicine Robert J. Alpern, M.D., Ph.D., an expert on HIV/HPV science and cervical cancer prevention, has been named dean of the School of Public Health. Vermund comes to Yale in February after serving since 2009 on the faculty of Vanderbilt University School of Medicine, where he was professor of pediatrics, medicine, health policy, and obstetrics and gynecology; the Amos Christie Chair in Global Health; director of the university-wide Vanderbilt Institute for Global Health; and vice president for global health of the Vanderbilt University Medical Center.

“In the mid-1980s, Dr. Vermund helped establish an adolescent health clinic that provided some of the earliest care to HIV-infected youth in New York City,” noted Yale President Peter Salovey, Ph.D. ’86, and Dean and Ensign Professor of Medicine Robert J. Alpern, M.D., Ph.D., an expert on HIV/HPV science and cervical cancer prevention, has been named dean of the School of Public Health. Vermund comes to Yale in February after serving since 2009 on the faculty of Vanderbilt University School of Medicine, where he was professor of pediatrics, medicine, health policy, and obstetrics and gynecology; the Amos Christie Chair in Global Health; director of the university-wide Vanderbilt Institute for Global Health; and vice president for global health of the Vanderbilt University Medical Center.
Revealing the vascular system

Investigator demonstrates that veins and arteries are far more than passive plumbing

In the late 1980s, William C. Sessa, Ph.D., then a doctoral candidate in pharmacology, read an editorial by Nobel Laureate George E. Palade, M.D., professor, chair, and founder of Yale’s then-named section of cell biology. Palade argued that long-held assumptions about the biology of the endothelium, or inner lining, of blood vessels, had become questionable, and he urged investigators to probe more deeply into the unknowns of the vascular system.

Sessa, now Alfred Gilman Professor of Pharmacology and professor of medicine, took Palade’s words to heart. He wanted to know how particles of LDL (low-density lipoprotein) cholesterol morphed from floating hitchhikers in the bloodstream to permanent lodgers in artery walls, where their effect on health can be profound.

Blood vessels had first caught Sessa’s attention when he was an undergraduate at Philadelphia College of Pharmacy and Sciences. As part of a research lab course, Sessa measured how the brain controls blood pressure, and he came away full of curiosity.

During that era, he says, science characterized the body’s vasculature as a network of passive garden hoses that merely shuttled blood and nutrients from major institutions and I was the freedom of inquiry he enjoys at his true home—his lab at Yale.

A new executive chair for Yale institutional review boards is chosen

John D. Roberts, M.D., professor of medicine and medical director of the Yale New Haven Hospital Adult Sickle Cell Program, has been selected as executive chair of Yale University’s Institutional Review Boards (IRBs), the committees that work to ensure that all Yale human subjects research is conducted ethically and according to governmental and university requirements. His new role begins as of the new year, with the retirement of his predecessor Maurice Jeremiah Maloney, M.D., J.D.

Roberts assumes the executive chair position as changes in IRB procedures are occurring nationwide. “Clinical research has moved from predominantly single center studies, with oversight from a local IRB, to multicenter studies, often involving scores of institutions,” he says. Many organizations involved in human subject research, including the National Institutes of Health and industry sponsors, are advocating use of central IRBs, which can oversee research at many sites. “This offers opportunities for increased efficiency for sponsors and researchers, and creates challenges in terms of maintaining awareness of local context research oversight,” he says. “I look forward to working with all of the IRBs and with Linda M. Coleman, J.D., the recently appointed director of the Yale Human Research Protections Program, as Yale // IRBs (page 2)
Many organisms experience a lack of appetite or avoid certain foods when they catch a virus or acquire harmful bacteria. A study led by Ruslan Medzhitov, Ph.D., the David W. Wallace Professor of Immunobiology, published Sept. 8 in Cell, suggests that nutrition has different effects on viral versus bacterial infections. “When animals are infected, they stop eating and switch to a fasting metabolic mode,” Medzhitov says. “The question was whether fasting metabolism is protective or detrimental.” Fasting proved helpful for recovery from fevers brought on by, for example, bacterial sepsis. However, eating food, which provides glucose, aided the mice’s ability to recover from a viral infection. The findings suggest that various diet preferences may correlate with different types of infections. Still, the authors note, the old adage, “Starve a fever, feed a cold,” might not apply because the effect likely depends on specific infections.

This year, findings of this study may inform clinicians’ decisions on nutrition for intensive care patients who suffer from acute infections.

New type 2 diabetes protein target named

Insulin resistance in type 2 diabetes is linked to defects in the insulin receptor in numerous organs, including the liver, as well as in adipocytes, or fat cells. Identification of drug targets is an ongoing effort. Narender Wajapeyee, Ph.D., associate professor of pathology, and Gerald I. Shulman, Wajapeyee, Ph.D., the Albert C. Mann Professor of Medical Engineering and director of the Yale Systems Biology Institute, have linked to defects in the insulin receptor—thus thwarting the insulin physiology, have led a study that finds March1 to be a highly influential protein.

March1 is a protein that is upregulated in both human and murine models of obesity. The team found March1 to be a highly influential protein that degrades the surface of the insulin receptor—thus thwarting the normal function of insulin, which is to keep glucose levels from rising in the bloodstream. To the researchers’ surprise, they found that obese people had noticeably higher levels of March1 expression than obese people. Their study was published Aug. 31 in Nature Communications.

According to Wajapeyee, patients need more treatment options because they face a catch-22. “Type 2 diabetes cannot initially be treated with insulin because the glucose signaling is disrupted,” he says. “The team now will work to find a small molecule drug to target March1.

Major grant accelerates cancer research

West Campus becomes a multidisciplinary center to explore how biological systems can aid—or block—aggressive cancer spread

A $5.9 million, five-year grant from the National Cancer Institute (NCI) will fuel an integrative, multidisciplinary research effort that seeks to better understand how cancer cells reach an aggressive state and begin to damage surrounding tissue. The initiative, called Cancer Systems Biology at Yale (CaSB@Yale), is one of four new research centers in NCI’s Cancer Systems Biology Consortium, and is directed by Andre Levchenko, Ph.D., the Yale Cancer Center’s associate director for Basic Research, and Gerald I. Shulman, Ph.D., professor of medicine (endocrinology). Their study was published Aug. 31 in Nature Communications.

CaSB@Yale is based at the university’s West Campus and brings together investigators with varying research backgrounds from three schools and seven departments at the university, and a variety of other institutes and programs. In particular, at the core of CaSB@Yale, the Yale Systems Biology Institute on West Campus will join forces with the Yale Cancer Biology Institute, the Raymond and Beverley Sackler Institute for Biological, Physical and Engineering Sciences, the Yale Cancer Center, and Emory University to address fundamental questions at the core of cancer biology.

The program will address the specific problem of phenotypic plasticity of invasive cancers. Cancer cells with the same genomic makeup can adopt different phenotypes, or characteristics, switching from rapid division and growth to invasive migration and metastatic spread through unknown mechanisms. Furthermore, different phenotypes may co-exist in the same tumor, with cells exchanging signals among themselves and with surrounding normal tissues. CaSB@Yale will explore this complexity of invasive cancer through a range of novel techniques and approaches.

CaSB@Yale will also be devoted to understanding and manipulating the complex molecular networks governing cellular complex behaviors. A key focus of the research will be on translational applications aimed at identifying new targets for therapeutic intervention and the development of new drugs targeting invasive cells.

Many advances in the last 2 decades have targeted chemotherapeutics and radiation therapy, which have had noticeable success. However, tumors are evolving and becoming resistant, requiring new targets that are not mutational.
New endowed professorship established in experimental pathology

In the 1980s, Joseph A. Madri, M.D., Ph.D., professor of pathology; and Leonard Bell, M.D., a post-doctoral fellow; enjoyed lingering in Madri’s lab after work and cooking up plans to launch a biotech company one day. “We had a folder on the Mac called ‘Fantasy,’” Madri recalls. Fantasy would become reality when Madri, Bell, and four colleagues met in 1993 at the Omni Hotel in New Haven, and set a course that would bring a startup called Alexion to life in 1991 at the Omni Hotel in New York. “We felt strongly that we should give back now that we have the ability,” Madri says. “I am a strong proponent of doing that through research that benefits the department’s research enterprise, so we came up with a professorship for an experimental pathologist. The professorship’s first occupant is Gerald S. Shadel, Ph.D., who also is professor of pathology and of genetics, and director of the Yale Center for Research on Aging (Y-Age).”

“Gerry Shadel is an ideal person to be the inaugural Madri professor, an outstanding scientist who is committed to understanding the cellular and molecular mechanisms of aging,” says Robert J. Alpern, M.D., dean and Ensign Professor of Medicine. Shadel, who became a member of the faculty in 2004, researches the role of mitochondria—energy generators within cells—in disease, aging, and the immune system. Shadel’s laboratory has contributed crucial knowledge to the understanding of mitochondrial gene regulation and metabolic stress signaling pathways. The lab’s groundbreaking aging studies have shown that mitochondrial respiration and reactive oxygen species signaling are key components of conserved longevity pathways.

Madri notes that in making his gift, he had a particular desire to support a mid-career researcher, and he is confident Shadel is the right choice. “He is an outstanding investigator,” says Madri. “He has a true and abiding interest in developing the department, its research, and its educational mission.”

Madri also continues to pursue his own abiding goal—to help people who have paroxysmal nocturnal hemoglobinuria. “We treat people who have paroxysmal nocturnal hemoglobinuria in 50 countries, and now they have a life expectancy that parallels the average person in their particular country, and they are productive members of society,” says Madri. The company makes therapies that also treat the bone-consuming disease lysozyme and as lysosomal acid lipase deficiency, a condition in which uncontrolled accumulation of cholesterol and triglycerides leads to organ damage and early death. “If I do nothing else in science, having helped thousands of people live a long, productive life is more than enough reward for me,” he says.

The Madris have spent their entire professional lives at Yale. Joseph Madri arrived as a postdoc in 1979. Lucille Madri held administrative roles at the university for 25 years. It is rare for a faculty member to endow a professorship, but Madri says Yale and the Department of Pathology deserve such a special gift. “Yale is a unique place and the postdocs and students who’ve cycled through the lab have been outstanding,” he says.
Copycat proteins may trigger type 1 diabetes

Despite the fact that it appears in childhood and has several genetic risk factors, autoimmune type 1 diabetes cannot be entirely predicted by genetics. Only one identical twin may get the disease, for instance. New research suggests how an environmental factor— gut bacteria— could play a role.

According to the study, led by Li Wen, M.D., Ph.D., senior research scientist in medicine (endocrinology), Fusobacteria in the guts of mice produce proteins that mimic the structure of molecules in insulin producing pancreatic beta cells, the same cells that are destroyed in type 1 diabetes.

As the number of Fusobacteria in mice increases, the immune system produces more T cells that recognize these molecules, spurring immune activity not only against the bacteria, but also against the pancreatic cells. In mice with a genetic risk factor for type 1 diabetes, having excess Fusobacteria in their guts accelerated the onset of disease. Moreover, altering their guts to decrease Fusobacteria reversed the development of type 1 diabetes, the researchers reported Sept. 12 in Journal of Experimental Medicine.

The new findings could eventually provide targets for new therapies in humans with type 1 diabetes.

Alumnus Singer ’02 funds Yale programs

Serial entrepreneur and physician honors a faculty mentor and a classmate as he salutes Yale for inspiring his personal achievements

The School of Medicine will receive support for cardiac research, a neuroscience lecture, and a global health fellowship; and a Yale College scholarship will honor a Yale school faculty member, thanks to a large gift to Yale University by self-described “serial entrepreneur” Michael Singer, M.D., B.S., Ph.D., ’00, and his wife Baharak Asefzadeh, O.D., M.S. The gift is in thanks to Yale for the role it played in shaping Singer’s success.

Singer’s professional life is centered in Boston, where he has lived since he began a residency in ophthalmology at Harvard. He has founded a series of health-related companies there and also teaches at Harvard Medical School. Topokine, which produces a topical treatment that acts on fat cells to contour the face, was one of Singer’s privately held companies. In 2015, Singer and Asefzadeh donated to Yale Topokine shares then valued at over $1 million. This past spring, the multinational pharmaceutical company Alergan purchased Topokine, providing Yale with immediate cash and rights to future milestone payments.

Yale University is “kind of where I grew up,” says Singer, who also attended Yale as an undergraduate, earning a Bachelor of Science degree in 1995. “Everything positive that has happened to me since depended on my arriving at Yale back in 1991.” Singer credits Yale with fostering his creativity and encouraging him to pursue a wide array of ideas and habits of thinking that led him to become the entrepreneur he is today. Faculty, and fellow students alike, made a big impression on Singer. “The most important part of the Yale experience is the people you meet,” he says. Accordingly, each facet of the gift will recognize individuals who made Singer’s time at Yale the formative experience it was.

As an undergraduate work-study student and then as a Ph.D. candidate, Singer studied the olfactory system in the lab of Gordon M. Shepherd, M.D., Ph.D., professor of neuroscience. Shepherd was more than a scientific mentor. “We also formed a very personal bond,” Shepherd recalls, noting that Singer was often a guest at his home. “My wife [Geetha Shepherd] enjoyed having him; she always enjoys having students come out, as they do from time to time.” The Shepherds were a “home-away-from-home” for him and for many Yale students, Singer says. In honor of the Shepherds, part of the gift will endow an undergraduate scholarship, the Gordon and Grethe Shepherd Scholarship Fund.

Also in honor of Singer’s mentor, the donation will endow a School of Medicine lectureship in integrative neuroscience, which Singer describes as “the hallmark of [Shepherd’s] long and distinguished career as a neuroscientist.” That field, Shepherd says, is concerned with synthesizing different kinds of data that scientists gather about the nervous system into a greater understanding of the system as a whole. The Department of Neuroscience, headed by Pietro De Camilli, M.D., the John Klingenstein Professor of Neuroscience and professor of cell biology, will administer the lectureship.

Singer’s gift also memorializes a classmate and friend, Joshua “Josh” Gibson, M.D., ’01, who died in 2005 due to an unrecognized heart condition. The Joshua C. Gibson, M.D., Memorial Fund for Heart Research will sponsor work in the laboratory of Daniel L. Jacoby, M.D., ’00, another contemporary and director of the Advanced Heart Failure and Cardiomyopathy and General Heart Failure programs. Singer and Gibson shared an interest in travel and global health, and during medical school both traveled to less-developed countries to do health research through Yale’s Downs Fellowship program. Another portion of the gift, also in Gibson’s name, will endow what Singer thinks of as a “reverse Downs fellowship” to sponsor scholars from less-developed countries to visit Yale School of Medicine.

Singer’s next venture is Cartesian Therapeutics, a company developing novel cancer therapies, and philanthropy is an ongoing priority. “I would like to begin a movement to encourage more entrepreneurs and early-stage investors to donate their privately held stock to support charity and institutes of higher learning,” he says.

“[Singer] was thrilled and excited by every opportunity that was presented to him here,” says Charles A. Greer, Ph.D., professor of neurosurgery and of neuroscience, and director of the Interdepartmental Neuroscience Graduate Program. Greer, who will co-administer the Shepherd lectures, says the donations reflect Singer’s character. “You know, sometimes people can become rather indifferent about opportunities being presented,” says Greer. “As they have a series of successes, they come to think that they maybe deserve them in some way. Michael never exhibited that trait. Michael always treated any success, any gesture or effort that was extended on his part with the greatest of gratitude and continues to do so.”
Early career recognition goes to five Yale investigators

Five School of Medicine scientists have been named Howard Hughes Medical Institute (HHMI) Faculty Scholars in recognition of their potential to make unique contributions to their fields. This newly established program—a joint endeavor of HHMI, the Bill & Melinda Gates Foundation, and the Simons Foundation—supports early-career basic researchers with grants up to 10 years of experience. The investigators were chosen based on their innovative approaches to solving biology-related problems that are relevant to human health.

Daniel A. Colon-Ramos, Ph.D., associate professor of cell biology and neuroscience, is an accomplished investigator, also known as roundworms, to explore the cellular mechanisms used to create, maintain, and modify synapses in order to further understanding of their role in producing behaviors and storing memories.

Antonio J. Giralez, Ph.D., professor of genetics, seeks to understand how the cellular codes that shape gene expression are used to turn a fertilized egg into a complex multicellular embryo. Using zebrafish as a model system, he aims to shed light on the mechanisms that initiate embryonic development and specify different cell types in vertebrates.

Andrew Goodman, Ph.D., associate professor of microbial pathogenesis, is exploring the mechanisms that human commensal microbes—those normally found in the body—use to cooperate, compete, and antagonize each other in the gut and how manipulating these communities could improve drug responses in patients.

Valentina Greco, Ph.D., associate professor of immunology and pharmacology, is studying the biochemical mechanisms that control the immune responses to inflammation that can trigger autoimmune disorders or fuel cancer.

“Promising young faculty members are the backbone of our ability to continue to conduct groundbreaking research,” says Dean Robert J. Alpern, M.D., Ensign Professor of Medicine. “I am proud that HHMI has chosen to support five of our most accomplished investigators.” Yale’s five awardees, as many as were chosen from any medical school, are among just 84 Faculty Scholars selected from a pool of more than 1,400 applicants.

Andrew Goodman, Ph.D., associate professor of microbial pathogenesis, is exploring the mechanisms that human commensal microbes—those normally found in the body—use to cooperate, compete, and antagonize each other in the gut and how manipulating these communities could improve drug responses in patients.

Valentina Greco, Ph.D., associate professor of immunology and pharmacology, is studying the biochemical mechanisms that control the immune responses to inflammation that can trigger autoimmune disorders or fuel cancer.

“Promising young faculty members are the backbone of our ability to continue to conduct groundbreaking research,” says Dean Robert J. Alpern, M.D., Ensign Professor of Medicine. “I am proud that HHMI has chosen to support five of our most accomplished investigators.” Yale’s five awardees, as many as were chosen from any medical school, are among just 84 Faculty Scholars selected from a pool of more than 1,400 applicants.

Slayman, who was passionately committed to the training and education of young scientists, became a mentor to many, relishing the opportunity to guide their research and careers. Megan C. King, Ph.D., associate professor of cell biology, notes that Slayman was instrumental in her earning an Early Outstanding Innovator Award, which sustained King’s career, made it possible for her to pursue scientific research, and opened doors to opportunities for independent scientific investigation.

“I believe mentors create a culture around their work,” King says, “which is a skill that most of us don’t have but which is increasingly important.”

The School of Medicine plans to hold a public memorial for Slayman in the coming weeks.
Arthur L. Horwich, a better understanding of endometriosis, and stem cells. Taylor's expression by sex steroids, endocrine menopause. His basic science research on implantation, endometriosis, and gynecology. His postdoctoral training at Yale University, and then came to Yale as a physician with the Permanente Medical Group in South Sacramento, Calif., where he also trained medical students and residents before joining UC Davis as a volunteer clinical faculty member in 2001. His passion for promoting diversity and inclusion stems from his own experiences. As an undergraduate at University of California, Berkeley, he felt isolated on a campus where there were few African-Americans even fewer than from his modest socioeconomic background. While serving as associate program director for the UC Davis internal medicine program, he noted that many of the students and residents with whom he worked shared his experiences of isolation and discrimination, prompting him to write a job description that led to his inaugural position as director of medical student diversity at UC Davis in 2008. He later became associate dean for student and resident diversity, developing initiatives to increase the pipeline of socioeconomically disadvantaged students, residents, and faculty and spearheading programs to support and empower underrepresented students interested in attending medical school.

“The School of Medicine is strongly committed to promoting racial, gender, ethnic, and socioeconomic diversity,” says Robert J. Alpren, M.D., dean and Ensign Professor of Medicine. “I am pleased that we have recruited such an exceptional candidate to head our efforts at promoting a culture in which all members of our community feel respected and included.”

At Yale, Latimore will coordinate with such groups as the Office of Multicultural Affairs, the Minority Organization for Retention and Expansion (MORE), the Committee on the Status of Women in Medicine (SWIM), the Committee on Diversity, Inclusion, and Social Justice, and the newly formed Dean’s Advisory Council on LGBTQ Affairs.

Latimore will aid with recruitment efforts to increase diversity within School of Medicine faculty. In addition, he says, “I am looking forward to working with Yale’s student body to develop programming that is more inclusive and to help underserved communities around the Yale campus.”

Albany Prize is awarded to investigator of proteins

Arthur L. Horwich, Sterling Professor of Genetics, professor of pediatrics, and a Howard Hughes Medical Institute investigator, is one of three recipients of the 2016 Albany Medical Center Prize in Medicine and Biomedical Research, one of the most prestigious honors in medicine. Horwich, F. Ulrich Harli, M.D., of the Max Planck Institute, and Susan Lindquist, Ph.D., at the Massachusetts Institute of Technology will share the $500,000 prize for their discoveries about the biology of protein folding.

Proteins must be folded into a properly structured 3D conformation and structure to carry out their functions, which are crucial to all life. The scientists have shown that protein folding inside cells does not occur spontaneously as previously believed but depends upon molecular “assistants” in a process called “chaperone-mediated protein folding.”

“Protein folding is a concept considered to be revolutionary in modern biology, with important implications for the treatment or delay of Parkinson’s disease, Alzheimer’s disease, Huntington’s disease, and other neurodegenerative conditions, as well as cancer and drug resistance,” says Vincent Verdile, M.D., the Lynne and Mark Groban, M.D. ’59, Distinctive Alumnus Award recipient, Dean of Albany Medical College and chair of the Albany Prize National Selection Committee.

A Chicago native, Horwich received both his undergraduate and medical degrees from Brown University, and then came to Yale for his internship and residency in pediatrics. He served as a postdoctoral fellow first at Salk Institute in the Tumor Virology Laboratory and then in the genetics department at the School of Medicine, before joining the medical school faculty in 1984.

He has received numerous honors including the Lasker Award for Basic Medical Research in 2011 and the Shaw Prize in Life Science and Medicine in 2012. He is a member of the National Academy of Sciences and the National Academy of Medicine (formerly the Institute of Medicine). Horwich has done laboratory work for several years, focusing on aspects that include protein quality control mechanisms, in an effort to understand exactly what causes the motor failure and paralysis that are hallmark of the disease.

Taylor is elected to National Academy of Medicine

Hugh T. Taylor, M.D., professor of medicine at Yale University, and member of the National Academy of Medicine (NAM), was elected to the Academy for his research in reproductive medicine, and was named Member of the Year by the American College of Obstetricians and Gynecologists. In 2012, he was named Honorary Member of the Year by the Endometriosis Association.

The NAM (originally the Institute of Medicine) was established in 1970 under the charter of the National Academy of Sciences to advise the nation on medical and health issues. Members are elected by their peers for distinguished contributions to medicine and health. At its annual meeting, NAM announced 70 new members from the United States and nine international members. Taylor earned a Bachelor of Arts from Yale College in 1983, and his M.D. degree from the University of Connecticut School of Medicine in 1988. He then returned to Yale for his residency in obstetrics and gynecology. His postdoctoral training at Yale included a fellowship in reproductive endocrinology and infertility as well as a fellowship in molecular pathology.

He became an associate research scientist in 1992 and joined the ladder track faculty in 1998.

In 2015-2016, he served as president of the Society for Reproductive Investigation, the leading academic society in the field of obstetrics and gynecology, and presided over its 2016 annual meeting. In 2013, he was named the 171 Foundation International Award for the impact of his research in reproductive medicine, and was named Member of the Year by the American College of Obstetricians and Gynecologists. In 2012, he was named Honorary Observer of the Year by the Endometriosis Association.

The NAM (originally the Institute of Medicine) was established in 1970 under the charter of the National Academy of Sciences to advise the nation on medical and health issues. Members are elected by their peers for distinguished contributions to medicine and health. At its annual meeting, NAM announced 70 new members from the United States and nine international members.